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APPENDIX D 

GRAVITATION AND THE PRINCIPLE OF EQUIVALENCE 

EINSTEIN'S THEORY OF SPECIAL RELA TMTY is very powerful In 

scope, because it has things to say about the foundations on which 

physics Is built. All of physics must be carefully scrutinized to see 

if it conforms to relativistic requirements. Thus the electromagnetism 

\of Maxwell was found to pass the test, and was actually partially justi

fied and strengthened by the relativistic point of view, On the other 

hand, classical mechanics had to be revised in order to satisfy 

Einstein's demand that the fundamental laws be Invariant under the 

Lorentz Transformation. Here we examine Newton's law.of gravita

tional attraction, summarized by the central force 

(D-1) 

which varies as the product of the two masses involved and inversely 

as the square of the distance between them. We would like to know if 

this law passes the test of relativity, or if instead a new theory of 

gravity Is required. 

The questioning of Newtonian gravitation at first seems unnecessary 

or even arrogant, since calculations made on planetary motion using 

Newton's formula agree with experiment to a very high degree of ac

curacy. In fact two planets were discovered by the deviations they 

caused in the calculated orbits of other planets. Yet from a relativistic 

point of view, Newton's law of gravitation cannot be correct as it 

stands, but needs at least a partial modification! 

First of all, how should one interpret the distance r between two 

masses? Who is supposed to measure this distance? Since lengths 

have lost their absolute character in relativity, an observer on one 

mass may measure a different distance than an observer on the other 

mass. We have no reasonable way to specify what distance should be 

used! It is also Implied In the formula that If you want to know the 

force between two objects�. you should put in the "distance between 
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them"�- But how does one mass know where the other mass is now? 
If no signal can travel with infinite speed, a given mass can only feel 
where another was at an earlier time - at least the time it takes light to 
travel between them. 

Another interesting comment one could make about Newton's formula is 
that the force depends on the particle masses. Yet in relativity theory 
mass is Just one form of energy. Why should gravity act only on that 
part of the energy contained in mass? Might it not also act upon (and 
be caused by) kinetic energy and massless particles like photons? 

Finally. there is a fact about gravitation which doesn't disagree with 
Newton's theory, but which Isn't explained by It either. That is the fact 
that In writi"ng the equation of motion of a particle in a gravitational field, 
the mass of the particle cancels out

1 
and so does not influence the mo

tion. This of course is Just "Galileo's experiment" of dropping two dif
ferent masses and noticing that they accelerate equally. The mass m 
in the force law Q..!!!..!!!.' we could call the gravitational mass, whereas 

2 
r -

the mass m in the "inertial-force" m a  could be called inertial mass. 
The fact that these masses are equal, or at least proportional through 
the constant G, ls not explained in Newton's theory of gravity. 

For these and other reasons. after completing special relativity 
Einstein went to work on a new theory of gravitation. This led to his 
general theory of relativity, published In 1915. The theory overcomes 
the objections to Newton's theory, and also has the required property 
that it reduce to special relativity in the absence of masses, and that 
it reduce to Newton;s gravitation for non-relativistic objects in weak 
fields. Einstein's special relativity was the result of carefully de
veloping the idea that light moves at the same velocity in all frames. 
An equally simple but powerful Idea, which he called the "Principle of 
Equivalence," guided him in the cons�ruction of general relativity. 
By using this principle, along with some beauU.ful mathematics describ
ing curved space as invented by Gauss, Riemann, and others, Einstein 
proposed a theory of gravity which accounts for gravitational phenomena 
in terms of a curved "non-Euclidean" geometry of space-time. Although 

158 

a retracing of the general theory ls far beyond the scope of this book, 
the equivalence principle by itself leads to some interesting results. 
We discuss it here for its own interest and because it is useful in 
understanding the twin paradox, as taken up in Appendix E. 

There are several ways to state the principle of equivalence, some of 
which are not equivalent to others! The reader is referred to the ref
erences for all but the single approach we take here. Imagine two 
spaceships, one of which is uniformly accelerating in empty space 
without any gravitational field, and the other standing at rest in a uni-

• 

form gravitational field, as shown in Figure D. 1. The principle of 
equivalence then claims that an 
experiment performed inside the f -;t 
accelerating ship will �_ve_ tp.e
same result as an exactly similar 
experiment inside the ship at 
rest In the uniform field. 

A key word here i"s 11inside, 11 

since you could clearly distin
guish between the two situations 
by looking outside to see if you 
are standing on some large mass 

111 I I

Figure D. I

or not. The principle is a way of expressing the observed fact that in
ertial and gravitational mass are equal. In the accelerating shfp

1 
it is 

an inside observer's inertial mass which "causes" him to press against 
the floor; in the stationary ship it is his gravitational mass which per
forms this function. The equivalence of these two situations is quite 
reasonable for mechanics: intuition and exact analYsis agree that the 
motion of an object inside is the same in either case. What is not so 
clear is that the principle applies to experiments with electricity 

I light, 
atomic and nuclear physics as well as mechanics. Yet Einstein de
cided to pursue this principle, supposing it to be universally valid, to 
see where it would lead him. We will use the principle here to deduce 
two effects of gravity which aren't contained in Newton's theory: the 
effect of gravitational potential on the rate of cloclca

1 and the bending 
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of light In a uniform fl�ld. These effects are deduced by considering 
two experiments with light waves. 

The first application of the equivalence principle to the behavior of 
light waves Is the derivation of the so-called "gravitational red-shift." 
Thia phenomenon can be understood as an influence of gravitation on 
the rate of clocks, quite apart from the special relativity effects met 
with earlier. To derive this effect, we make use of the device of de
ducing the result of an experiment performed In a uniformly accelerat
ing rocket, and then claim by virtue of the equivalence principle_ that
the experiment would give the same result In a rocket at rest In a uni
form gravitational field. The "experiment" Is simple In principle, but 
would be difficult to carry out In practice. 

At the top of the accelerating rocket Is an observer who shines a flash
light at another observer at the bottom of the rocket, as shown In 

Figure D. 2. For simplicity we 
assume the flasbllght emits 
monochromatic light, and also 
that the distance traveled by 
the bottom observer while the 
light comes to him Is small 
compared to the length of the 
ship. It follows that the time It 
takes for the light to reach him 
·1s about t = l /c, where l la the Figure D.2 

distance between the two observers. But during this time the bottom 
observer bas attained a velocity v =at= al/c with respect to the veloc
ity of the flashlight when the light was emitted. He Is moving toward 
the source, so be will observe a blue-shift due t_o the Doppler effect. 
Since we have already assumed bis velocity Is small, so as to neglect 
the distance he travels compared to the distance l , we can use the 
non-relativistic Doppler formula to give 

. � P observed
= Pemltted (l + v/c) = P emitted (l + af /c2J • (D-2) 
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Clearly if Instead the bottom observer were to shine a monochromatic 

flashlight at the top observer, the top observer would observe a red
shift, since by the time he received the light be would be moving away 
from where the source was when the light was emitted. 

Now by means of the equivalence principle we can claim that the same 
effects would be observed in a rocket at rest in a uniform gravitational 
field, if we substitute the acceleration of gravity g for the rocket ac
celeration a. That is, if the observer at the top of the ship were to 
shine a frequency v emitted toward the lower observer, the lower ob-
server would see a frequency P b d = P ltted (1 +gf /c1, a blue-o serve em 
shift, whereas the top observer would see a red-shift if he looked at a 
light beam sent off by the lower observer. But In this case we can 
hardly blame the shift on Doppler, because neither observer Is moving. 
We have to Invoke some other explanation to understand the change In 
frequency In a rocket at rest In a uniform field. This situation Is remi
niscent of the muon decay problem of Chapters IV and V, where it was 
necessary to explain why the muons failed to decay before they bad 
penetrated the atmosphere. The .fu£! of penetration held in both the 
earth and muon frames, but the reason for the fact was different in 
the two frames. Observers on the earth explained it by saying that the 
muon clocks ran slow, whereas the muon explained it by saying that 
the atmosphere was thin because of the Lorentz contraction. 

How then can we explain the blue-shift seen by the man at the bottom 
of the stationary rocket? _If we think of the atoms which radiate the 
light as clocks whose rate Is _lncl_icated by the frequency of their eml_tted_ 
light, the observer at the bottom would be forced to conclude that these 
�locks are runntni fast collq)ar;d to similar clocks be;w-� w-�·:··-m·;·
� 

- -
--------

� clocks radiate a cei-tain frequency, while atoms higher_ up radiate 
a higher frequency. The observer at the top would agree with his Judg
ment. H� ��es a red-shift when be looks at atoms below him, so he 
would say that his own clocks are running faster than those below him. 

------- -

If � clocks up high run faster, it is of course true that all clocks 
up high run faster. For suppose a clock at the top of the rocket has a 
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luminous second- hand emitting light of frequency • = 5 x 1014 sec -l,
corresponding to a yellow color. Then In one complete revolution of 
the second-hand 60 x 5 x 1014 = 3 x 1l6 waves will be emitted. The
observ�r at the bottom must also see 3 x 1016 waves/ revolution, since 
none are created or destroyed in transmission. But the frequency of 
the waves would Increase by the factor (l+gl/c2), so it follows that the 
second-hand of the clock at the top appears to complete a revolution in 
less than 60 seconds to the man at the bottom, by the exact same factor. 

The gravitational effect on clock rates is not so paradoxical as the time
dilation effect for moving clocks, since both the upper and lower ob
servers agree that the upper clocks run faster than the lower clocks. 

---·--··-----· ----- ----

It is Interesting that the quantity g 1 Is Just the difference In gravita-
tional potential A¢, In a uniform field. In terms of A¢ , the potential 
energy (mgl) of a particle having mass m Is mA¢. The gravitational 
effect on clocks can therefore be written 

"observed = "emitted (l + A¢/c2
) (D-3) 

where the sign of A¢ is chosen to make light from higher clocks have 
a higher frequency. 

It is easy to calculate the magnitude ·of this effect on the earth's surface., 2 . 
Using a uniform g of about 9. 8 m/sec , a clock on top of 29, 028-foot --- ------- ------- - . -- ---------
Mt. Everest would :r_qn faster than a similar clock at sea level by about 
---·--------fa- ..... .... -·- - ..... ,. . . , .. , ,.. . 

,. -·--
one part in 10 _ _2_which amounts to a gain of one second in 30,000 years.
·within the past few years it has become feasible to perform experi
ments of this accuracy, using the MOssbauer effect, which allows an
extremely sensitive determination of frequency changes in y-ray
photons. This effect was used by Pound and Rebka in 1960 to measure
the gravitational effect on the frequency of 14. 4 kilovolt photons emitted
by the Isotope Fe57 • They used a tower 74 feet high, for which we. 

2 -15 would calculate a shift of A•/• = g 1/c = 2. 5 x 10 • They observed
a shift, and found that

Pound and Rebka, Phys. Rev. Letters:!, 337, 1960 
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which is excellent agreement, especially considering that the experi
ment was so delicate that a 1" temperature difference between the top 
and bottom of the tower would have destroyed the effect, due to Doppler 
shifts caused by different velocities of the nuclei In the two positions. 

ff we ass1J_�':�at the factor l + A¢/c2 Is also valid for non-uniform 
!ields, for which A¢ f gl, the frequency shift of light from the sun
and stars can be used to test the theory. The change In pote�tial en
ergy in going from the surface of the sun to the surface of the earth is

GM GM 
A¢ = _ sun + earth 

Rsun Rearth 

The second term is much smaller than the first, so the frequency shift 
Is: 

A• 

vemitted 
v observed - v emitted 

,, emitted 

or a red-shift of two parts per million. White dwarf stars, with nearly 
the sun's mass compressed to the size of the earth, have a red-shift 
about 100 times as large. Shifts have been observed from both the sun 
and white dwarfs, and are in agreement with the theory, although there 
is considerable error due to other causes of line-shifting. The shifts 
are found, of course, by comparing observed atomic spectra with 
spectra from laboratory sources. 

A second application of the equivalence principle is the calculation of 
the bending of light in a gravitational field. In this experiment, a 
flashlight is aimed sideways in each rocket, as shown in �igure D. 3. 
We can analyze the motion of the light beam in the accelerating ship, 
and then claim the results must be the same i� the rocket at rest in a 
uniform field. Making again the assumption that the acceleration is 
small enough so the rocket doesn't attain relativistic velocities while 
the light travels from left to right, we know that if the light takes 

l ., 
time t to cross the ship, the ship will have moved a distance - a(",2 

163 

eboconnor
Highlight

eboconnor
Highlight

eboconnor
Highlight

eboconnor
Highlight

eboconnor
Highlight

eboconnor
Highlight

eboconnor
Highlight

eboconnor
Highlight



Therefore, although the llght 

beam moves In a straight line as 
seen by inertial observers, it 
moves in a curved parabolic path 
as seen by observers on the ac
celerating ship. If x and y are 
the horizontal and vertical dis-
tances covered by the beam, 

1 2 x = ct and y = 2 at , giving
y = a 

2 
x2 • By the equivalence

2c 

t .. 

principle, we can then say that figure D .3 

t .. 
• 

a little later 

�- light will fall a distance y =-¾ x2 In a uniform gravitational field as 
2c 

well. This prediction Is even harder to verify than the red-shift phe-
nomenon. A light beam aimed sideways along the earth's surface would 

9 8 2 -10 fall a distance • 
16 • 1000 = . 54 x 10 meters for every 1000

2·9-10 
meters of horizontal travel. This distance is about- the radius of a 
hydrogen atom. 

The deflection of the light of a star around the sun during a total eclipse 
has been seen, although It Is quite small. Since the gravitational field 
of the sun Is not uniform, It Is necessary to work out how much light 
bends around a spherical object. Using his general theory of relativity, 
Einstein computed the deflection around the sun to be 1. 75 seconds of 
arc. The experiments show a wide degree of scatter, but are at least 
not in serious disagreement with Einstein's value. General relativity 
hasn't had the same thorough and wide-ranging experimental verifica
tion enjoyed by special relativity, since the experiments In question 
are so difficult. New experiments are gradually becoming technically 
feasible, so we can hope for some clarification in the future. 

REFERENCE 

1. The books by Einstein and several other books listed in the general
bibliography contain discussions of the equivalence principle and
general relativity.
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APPENDIX E 

THE TWIN PARADOX 

AS MENTIONED IN Chapter IV, the time-dilation effect can lead to 
apparently paradoxical conclusions. For each of two relatively moving 
inertial observers to claim that the other observer's clock runs slow 
seems contradictory and nonsensical. Nevertheless, as illustrated in 
section D of Chapter VI, there is actually no contradiction. When ac
count is taken of the Lorentz contraction and the fact that two clocks in 
one frame are not synchronized when viewed from another frame, the 
"paradox11 is r esolved. In that section on "Rockets and Clocks, 11 only 
inertial clocks and inertial observers were considered. No clocks or 
observers were accelerated during any portion of the experiment. 
Therefore that discussion has no bearing on the consistency of the twin 
story, in which one twin departs for Sirius and returns, necessarily 
accelerating during at least part of the trip. In order to understand 
this situation from both points of view, it is necessary to know how to 
deal with accelerating clocks and accelerating observers. 

As pointed out several times in the text, special relativity deals only 
with observations made by inertial observers. Therefore the twin who 
accelerates cannot use the Lorentz transformation or any deductions 
from it, such as time dilation or length contraction. This should not 
be construed as a claim that special relativity can't be used to analyze 
accelerating objects, including rods and clocks. As long as the accel
eration, momentum, energy, and other properties of a particle are 
measured by inertial observers, the transformations of special relativ
ity can be used to calculate these quantities in any other inertial frame. 

Thus our first project in this appendix is a discus:;ion of accelerating 
clocks, so that the twin who stays at home can calculate the aging of 
the traveling twin while that twin is accelerating. Secondly, in order 
to analyze events from the viewpoint of the traveler, we have to know 
how clocks behave when viewed from accelerating frames of reference. 

Neither of these two projects is simple. A thorough analysis of ac
celerating frames of reference must be reserved for a study of 
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Einstein's general theory of relativity. We will do here as much as we 
can with the results of Appendix D, coming from the prin�iple of equiv
alence. Even the topic of accelerating clocks viewed from inertial 
frames will involve here a number of assumptions. 

With regard to accelerating clocks, we'll assume all our clocks are 
"ideal. " Such a clock is not affected by acceleration per se, but simply 
runs slow by the time-dilation factor 11 - v2 /c2 appropriate for the 
velocity it has at each moment. There is probably no real clock which 
is completely ideal, since an acceferation would likely have � effect 
on any clock we might devise. As an· extreme example, a watch which 

. decelerates as it hits the floor may have its rate drastically altered. 
Similarly,. the traveling twin would not want to accelerate too fast as he 
leaves for Sirius. An atomic or nuclear clock, whose rate is measured 
by the frequency of emitted radiation, is a nearly ideal clock for reason
able accelerations. Certainly for the accelerations likely to occur in 
spaceships, such a clock could be considered ideal. Of course any 
other kind of clock could be used if it were near enough to ideal, or if 
it could be corrected for the effects of acceleration. 

Assuming that we have such a clock, we would like to know what it reads 
as compared with a similar clock at rest in an inertial frame. During 
an infinitesimal time interval di (as measured by the inertial clock) 
the accelerating clock will have some velocity v, so will record a time 
interval dr = dt J 1 - v2 /c2 due to time dilation. Since the velocity 
depends on time, this expression has to be integrated for finite time 

. intervals. If we choose T = 0 when t = 0, then the time read by the 
accelerating clock is 

· t j 2 2 
T = f dtl - " /c , 

0 

which is called the "integrated proper time. 11 

(E-1) 

Regarding accelerating observers and their measurement of clock rates, 
it was found in Appendix D that clocks run at different rates at different 
points in an accelerating frame. The effect could be understood as a 
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gravitational influence on clocks, with those at high altitudes running 
faster than those at lower altitudes. To first-order accuracy, the ratio . 2 of the rates of two clocks Is (l+gl/c ), where g Is the (uniform) ac-
celeration or gravitational field, and l Is the difference In altitude. It 
Is Important to note that It ls the gravitational potential rather than the 
gravitational force itself which influences this rate. 

We have now assembled the machinery needed to tackle the story of tbe 
twins to first-order accuracy from the point of view of both twins. We 
wlll find that the relative youthfulness of tbe traveling twin upon his re
turn Is a consistent result, agreed upon by botb, An exact analysis 
confirms this consistency in detail, but is considerably more difficult 
to carry out, principally because of the need for careful definitions of 
coordinates and clock rates in accelerating frames. An exact treatment 

. . can be found In Mimer's book. The first-order analysis we will do 
here has the advantage of simplicity and displays the main features of the 
complete treatment, Throughout the following, all times wlll ref•t:...!o 
the readings of ideal clocks. 

The situation is, then, as follows: twin A stays at home, remaining 
in an inertial frame at all times. Twin B accelerates away, coasts 
toward Sirius, decelerates to rest, accelerates back, coasts toward 
the earth, and decelerates and stops, all as shown In Figure E. l. We 
may as well assume that the trip Is symmetrical, so that all the ac
celeration and deceleration times are of equal duration as read by 
clocks In A's frame, say At1 (

Al, and that the going and coming coast
periods have the same velocity and duration A 12 (

A). With lhls intro
duction we can now calculate the total time interval read by both clocks, 
first froni A's point of view, and then from B's point of view, 

�: 
The total time read by A's clock between B's departure and return ls 

AT (A) =4A t (A)+ 2A t (A)
1 2 ' (E-2)

C. Mj6ller. The Theory of Relativity (Oxford University Press, 1952)
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A 8 

Caastlna 
-

�@ -

Home Sirius 

figure E .1 

since there are four acceleration periods and two coasting perfods. Now 
the ratio . A t1 

(A)/ A t2 (A) can be made arbitrarily small, either by In
creasing the accelerations or by taking a longer trip. That ls, we can 
assume that the acceleration times are negligible compared to the time 
for the whole trip, and therefore A T(A) " 2A t

2 
(A).

What will B's clock read when he returns? During the coasting periods 
B's clock will run slow as seen by A, so by the usual time-dilation 
formula, 

(E-3) 

During an accelerating period, B's clock will record a time Interval 

At (A)
At1 

(B) = / 1 dt /1 -v2/c2 
(E-4) 

Clearly, A;_ (B) < Ai_ (A) since the Integrand Is less than unity over the 
e.ntlre Interval. That Is, B's clock will run slow while accelerating,
but by a varying rate. Since we have already assumed that A t1 (

A) Is

negligible compared to A t2 
(A), It follows that A;_ (B) « A 12 (A) also.

If In addition the coasting velocity Is not so high that A t
2 

( B) Is also 

negli�ble compared to A t
2 

(A), we can say that A \1 
(B) « A t

2 
(B),

and so neglect the periods of acceleration for B's clock also. The 
final result, therefore, is that from A's point of view, B's clock 
reads less than A's when Ibey reunite. In fact, 
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AT(A) = AT(B) 

)1 -v2/c2 

2 
= AT(B) (1 +7 +. 

2c 
. . ) 

to first order In v2 /c2, using the binomial expansion. 

To B: 

(E-5) 

The more difficult Job remains of discovering why B returns younger 
than A as seen by B himself! During the coasting periods, while B 
Is at rest In an Inertial frame, be is allowed lo use special relativity. 
So during this time, he must find that A •s clock runs slow, which would 
seem to Imply that A will be younger than B when the trip Is over. 
Therefore the periods of acceleration must be£!!!£!!! from B's stand.
point, because A must age so fast during these periods that be not 
only overcomes his slower aging during coasting, but actually ages 
enough extra to make him older than B at the end, by the factor al
ready found. This miracle Is wrought by the gravitational Influence on 
clock-rates derived In Appendix D. The magnitude of the effect Is so 
large during the time that B turns around at Sirius, that this period of 
acceleration Is not negligible from B's point of view. 

While B Is coasting, time dilation of A's clock gives 

(E-6) 

to first order In v2;c2. While B ls accelerating, he feels an effec
tive gravitational field In his frame, which will cause clocks A and B 
to run at different rates. The clock at "higher altitude" will run faster 
than the clock at "lower altitude" by the factor (l+gl/c2), �here g Is 
the acceleration and l Is the distance between them (as measured by B). 
During the Initial and fins! periods of acceleration, A Is at "lower alll-
tudes" than B, so will run slower. The factor (l+gl/c ) will vary 
continuously, since l changes. But for not too high velocities, 
v = ./2gi for uniform acceleration, so gl/c2 " v2/2c2, and (1 +gl/c2) 
will vary from unity to something less than three halves. The 
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acceleration time for B ls assumed to be negligible compared to the 
coasting time, so the same is true for A's clock, since it will read 
somewhat less than B's clock at the end of the acceleration period. 

The situation is quite different. however, when B turns around at the 
midpoint of his Journey. Now it is � who is at a "higher altitude, " in  
fact higher by the distance between the earth and Sirius. In terms of 
B's total travel time and the velocity while coastiilg, this distance is 

ll.T(B) l = -2- v. The acceleration g Is the change in velocity divided by
the time interval for the acceleration as measured by B, or 2v/ t,t(B). 
The change in velocity is 2v, because the velocity is first one way and 
then the other way after the turn-around is completed. 
runs faster than B by the factor 

So A will advance an amount 
2 (B) At(A) = At(B) (1 + v AT )

c2 At(B) 

Altogether. A 

(E-7) 

(E-8) 

The amazing thing about this result ls that no matter how fast B turns 
around (At(B) _ 0), he wlll see A age by at least (v2/c2)AT(Bl ,
which is proportional to the time for the entire trip! A Is at such high 
altitudes in B's effective gravitational field that he ages a great deal 
almost instantaneously from B's point of view. If B were watching 
through a telescope, A's hair might turn white in a few seconds t 

The total time for the trip to B ls AT(B), and the total time for A can 
be found by adding his aging during the turn-around phase to that froni 
the constant-velocity phase. As before, we take At(B) - 0 relative to 
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A t2 
(B), so A T(A) = A T(B) (1 - v2 /2c2 

+ ••• ) (constant velocity part)

2 
+ L A,tB)

02 
(accelerating part) 

(E-9) 

which shows that A ls older than B at the end of the trip by the same 
2 2amount (at least to this order In v /c ) as we found before from A's 

point of view! The new element we've introduced la the gravitational 
effect on clocks, which must be included when using accelerated frames 
of reference. 

The purpose of the foregoing was to demonstrate the way in which the 
twin "paradox" can be resolved from the traveling twin's point of view. 
A number of implicit as well as explicit assumptions have been made. 
As stated before, a thorough investigation of accelerating frames of ref
erence la both necessary and worthwhile, and leads into the fascinating 
subject of general relativity. 

�e twin "paradox" is really no paradox at all. The idea that a contra
diction ls involved arose from a misunderstanding of the special theory 
of relativity - namely, that the time-dilation formula could be used in 
all situations. Since it was derived for Inertial frames, it ls not at all 
surprising that It doesn't work for the accelerating twin. The spaceman 
who goes off to Sirius as in our example really will be younger than his 
twin brother when he returns. 
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